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Abstract. The gauge equivalence between the(2+1)-dimensional Zakharov equation and the
(2+1)-dimensional integrable continuous Heisenberg ferromagnetic model is established. Their
integrable reductions are also shown explicitly.

1. Introduction

The concepts of gauge equivalence between completely integrable partial differential
equations (NPDE) play an important role in the theory of solitons [1, 2]. So, for example,
in (1+1)-dimensional soliton theory, a well known gauge equivalence takes place between
the Landau–Lifshitz equation (LLE) or the(1 + 1)-dimensional continuous Heisenberg
ferromagnetic model

St = S ∧ Sxx (1)

and the nonlinear Schrödinger equation (NLSE)

iqt + qxx + 2E|q|2q = 0 (2)

whereE = ±1 [1–3].
Many efforts have recently been made to study the(2 + 1)-dimensional integrable

NPDE [4–11]. Here we have the following interesting phenomenon: for every(1+ 1)-
dimensional soliton (integrable) equation, there exist several(2+1)-dimensional integrable
(and nonintegrable) generalizations. So, for example, the LLE (1) admits the following
(2+1)-dimensional integrable and nonintegrable extensions. (Below we use the conditional
notations, e.g. the M-I equation or the M-IX equation, etc, in order to distinguish the
different spin systems.)

(1◦) The M-I equation [6]

St = (S ∧ Sy + uS)x (3a)

ux = −S(Sx ∧ Sy). (3b)

(2◦) The M-VIII equation [6]

St = S ∧ Sxx + uSx (4a)

uy = κS(Sx ∧ Sy). (4b)
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(3◦) The Ishimori equation [9]

St = S ∧ (Sxx + α2Syy)+ uySx + uxSy (5a)

uxx − α2uyy = −2α2S(Sx ∧ Sy). (5b)

(4◦) The M-IX equation [6]

St = S ∧M1S + A2Sx + A1Sy (6a)

M2u = −2α2κS(Sx ∧ Sy). (6b)

(5◦) The M-XVIII equation [6]

St = S ∧ {Sxx − α(2b + 1)Sxy + α2Syy} + A′20Sx + A′10Sy (7a)

uxx − α2uyy = −2α2κS(Sx ∧ Sy). (7b)

(6◦) The M-XIX equation [6]

St = S ∧ {α2Syy − a(a + 1)Sxx} + A′′20Sx + A′′10Sy (8a)

M2u = −2α2κS(Sx ∧ Sy). (8b)

(7◦) The M-XX equation [6]

St = S ∧ {(b + 1)Sxx − bSyy} + (b + 1)uxSx + buySy (9a)

uxy = ακS(Sx ∧ Sy). (9b)

(8◦) The (2+ 1)-dimensional LLE

St = S ∧ (Sxx + Syy) (10)

and so on. HereS = (S1, S2, S3), S2 = 1, a, b, α, κ are constants,u is a scalar function.
All of these equations in(1+1)-dimensions reduce to the LLE (1). Note that here equations
(3)–(9) are integrable, at the same time equation (10) is apparently not integrable. Besides
which, all of these spin systems have a remarkable common property, namely, they possess
the topological invariant

Q = 1

4π

∫ ∫ +∞
−∞

dx dy S(Sx ∧ Sy). (11)

The solutions of these spin systems are therefore classified by the integer value of
Q = N = 0, ±1, ±2, ±3, . . . .

In 2+ 1 dimensions, gauge equivalence has been recently constructed for the Davey–
Stewartson and Ishimori equations [5], for other spin systems, nonlinear Schrödinger-type
equations etc [6–8]. Here, in particular, the following two questions naturally arise.

(1′) What equations are gauge equivalent counterparts of the equations (3), (4) and
(6)–(9)?

(2′) What equations are the(2 + 1)-dimensional integrable generalizations of the
anisotropic LLE?

St = S ∧ Sxx + S ∧ JS (12)

whereJ = diag(J1, J2, J3) is the matrix of anisotropy. In this work we try to provide
answers to these guestions.

This paper is organized as follows. In section 2 we establish the gauge equivalence
between the M-IX equation and the Zakharov equation. In section 3 we construct the
integrable reductions of the M-IX equation and present their equivalent counterparts. In
section 4 we consider the(2+ 1)-dimensional continuous Heisenberg ferromagnet model
with the one-ion anisotropy and obtain its equivalent soliton equation. Also, we establish
the gauge equivalence between the isotropic and anisotropic versions of this model. We
finish with a conclusion.



Gauge equivalence 9537

2. Gauge equivalence between the M-IX equation and the Zakharov equation

The M-IX equation looks like [6]

iSt + 1
2[S,M1S] + A2Sx + A1Sy = 0 (13a)

M2u = α2

4i
tr(S[Sy, Sx ]) (13b)

whereα, b, a = constants and

S =
(
S3 rS−

rS+ −S3

)
S± = S1± iS2 S2 = I r2 = ±1

M1 = α2 ∂
2

∂y2
+ 2α(b − a) ∂2

∂x∂y
+ (a2− 2ab − b) ∂

2

∂x2

M2 = α2 ∂
2

∂y2
− α(2a + 1)

∂2

∂x∂y
+ a(a + 1)

∂2

∂x2

A1 = 2i{α(2b + 1)uy − (2ab + a + b)ux}
A2 = 2i{α−1(2a2b + a2+ 2ab + b)ux − (2ab + a + b)uy}.

This set of equations is integrable in the sense that it admits the Lax representation and
has different types of solutions. In general, we will distinguish the two integrable cases: the
M-IXA equation asα2 = 1 and the M-IXB equation asα2 = −1. Besides, the equation (13)
admits several integrable reductions: the M-VIII equation asb = 0, the Ishimori equation as
a = b = − 1

2 and so on. Equation (13) is the(2+ 1)-dimensional integrable generalization
of the LLE (1) and in 1+ 1 dimensions reduces to it.

The Lax representation of the equation (13) is given by [6]

α8y = 1
2[S + (2a + 1)I ]8x (14a)

8t = i

2
[S + (2b + 1)I ]8xx + i

2
W8x (14b)

with

W = (2b + 1)E + (2b − a + 1
2)SSx + (2b + 1)FS + FI + 1

2Sx + ES + αSSy
E = − i

2α
ux F = i

2

(
(2a + 1)ux

α
− 2uy

)
.

Let us now find the equation which is gauge equivalent to equation (13). To this end,
we consider the following transformation

8 = g−19 (15)

where8 is the matrix solution of linear problem (14),9 and g are temporally unknown
matrix-valued functions. Substituting (15) into (14) we get

α9y = 1
2[gSg−1+ (2a + 1)I ]9x + [αgy − 1

2gSg
−1gx − 1

2(2a + 1)gx ]g−19 (16a)

9t = i

2
[gSg−1+ (2b + 1)I ]9xx + g

{
i[S + (2b + 1)I ](g−1)x + i

2
Wg−1

}
9x

+g
{
gtg
−1+ i

2
[S + (2b + 1)I ](g−1

xx )+
i

2
W(g−1)x

}
9. (16b)

Now let us choose the unknown functionsg andS in the form

g =
(
f1(1+ S3) f1rS

−

f2rS
+ −f2(1+ S3)

)
S = g−1σ3g (17)
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wherefj satisfy the following equations:

α(ln f1)y − (a + 1)(ln f1)x =
(a + 1)(S3x + S3S3x + S−x S+)− α(S3y + S3S3y + S−y S+)

2(1+ S3)

(18a)

α(ln f2)y − a(ln f2)x =
a(S3x + S3S3x + S+x S−)− α(S3y + S3S3y + S+y S−)

2(1+ S3)
. (18b)

From (16), (17) it follows that

αgyg
−1− B1gxg

−1 = B0 (19)

where

B1 =
(
a + 1 0

0 a

)
B0 =

(
0 q

p 0

)
.

Herea = constant andp, q are some complex functions which are equal to

q = f1{α[S3yS
− − S−y (1+ S3)] + (a + 1)[S3xS

− − S−x (1+ S3)]}
2f2(1+ S3)

(20a)

p = f2{a[S3xS
+ − S−x (1+ S3)] + α[S3yS

+ − S−y (1+ S3)]}
2f1(1+ S3)

. (20b)

Hence we obtain

pq = 1
4{α(2a + 1)SxSy + iαS(Sx ∧ Sy)− a(a + 1)S2

x − α2S2
y} (21)

whereS = (S1, S2, S3) is the spin vector,S2 = 1. After these calculations equations (16)
take the forms

α9y = B19x + B09 (22a)

9t = iC29xx + C19x + C09 (22b)

with

C2 =
(
b + 1 0

0 b

)
C1 =

(
0 iq
ip 0

)
C0 =

(
c11 c12

c21 c22

)
c12 = i(2b − a + 1)qx + iαqy c21 = i(a − 2b)px − iαpy.

Herecjj is the solution of the following equations

(a + 1)c11x − αc11y = i[(2b − a + 1)(pq)x + α(pq)y ]

ac22x − αc22y = i[(a − 2b)(pq)x − α(pq)y ].
(23)

The compatibility condition of equations (22) gives the following(2+ 1)-dimensional
nonlinear Schr̈odinger-type equation

iqt +M1q + vq = 0 (24a)

ipt −M1p − vp = 0 (24b)

M2v = −2M1(pq) (24c)

which is the Zakharov equation (ZE) [10], wherev = i(c11 − c22) and p = r2q. Thus
we have proved that equation (13) is gauge equivalent to the(2+ 1)-dimensional ZE (24)
and vice versa. Note that the gauge transformation presented above is reversible. In fact,
starting from the linear problem (22) after the standard gauge transformation, we can come
to the Lax representation (14) of equation (13) that proves the gauge equivalence between
equations (13) and (24).
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3. Integrable reductions

It is interesting to note that equation (13) admits some integrable reductions. Let us now
consider these particular integrable cases.

3.1. The M-VIII equation

Let b = 0. Then equations (13) take the form

iSt = 1
2[Sξξ , S] + iwSξ (25a)

wη = 1

4i
tr(S[Sη, Sξ ]) (25b)

where

ξ = x + a + 1

α
y η = −x − a

α
y w = − 1

α
uξ

which is the M-VIII equation [6]. The corresponding Lax representation has the form

8Z+ = S8Z− (26a)

8t = 2i[S + I ]8Z−Z− + iK8Z− (26b)

whereZ± = ξ ± η and

K = E0+ E0S + SZ− + 2SSZ− + SSZ+ E0 = i

α
(uZ+ + uZ−).

The gauge equivalent counterpart of equation (25), we obtain from (24) asb = 0

iqt + qξξ + vq = 0 (27a)

vη = −2r2(q̄q)ξ (27b)

which is the other ZE [10].

3.2. The Ishimori equation

Now let us consider the case:a = b = − 1
2. In this case equations (13) reduce to the well

known Ishimori equation

iSt + 1
2[S, ( 1

4Sxx + α2Syy)] + iuySx + iuxSy = 0 (28a)

α2uyy − 1

4
uxx = α2

4i
tr(S[Sy, Sx ]). (28b)

The Ishimori equation (28) is of great interest, since it is the first example of integrable
spin systems on the plane. This equation is considered as a useful ‘laboratory’ for
experiments with new theoretical tools to reveal the specific nature of soliton models of
(2+ 1)-dimensional spin systems. As is well known, equation (28) allows us to obtain the
rich class of topologically nontrivial and nonequivalent solutions (solitons, lumps, vortex,
dromions and so on) which are classified by the value of the topological charge (11).

The gauge equivalent counterpart of equation (28) is the Davey–Stewartson equation

iqt + 1
4qxx + α2qyy + vq = 0 (29a)

α2vyy − 1
4vxx = −2{α2(pq)yy + 1

4(pq)xx} (29b)

that follows from the ZE (24). This fact was first established in [5]. The Lax representations
of (28) and (29) can be obtained from (14) and (22), respectively, asa = b = − 1

2.
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3.3. The M-XVIII equation

Now we consider the reduction:a = − 1
2. Equation (13) then reduces to the M-XVIII

equation [6]

iSt + 1
2[S, ( 1

4Sxx − α(2b + 1)Sxy + α2Syy)] + A′2Sx + A′1Sy = 0 (30a)

α2uyy − 1

4
uxx = α2

4i
tr(S[Sy, Sx ]) (30b)

whereA′j = Aj asa = − 1
2. The corresponding gauge equivalent equation is obtained from

(24) and looks like

iqt + 1
4qxx − α(2b + 1)qxy + α2qyy + vq = 0 (31a)

α2vyy − 1
4vxx = −2{α2(pq)yy − α(2b + 1)(pq)xy + 1

4(pq)xx}. (31b)

From (14) and (22) we obtain the Lax representations of (30) and (31), respectively, as
a = − 1

2.

3.4. The M-XIX equation

Let us consider the case:a = b. Then we obtain the M-XIX equation [6]

iSt = 1
2[S, {α2Syy − a(a + 1)Sxx}] + A′′2Sx + A′′1Sy (32a)

M2u = −α
2

4i
tr(S[Sx, Sy ]) (32b)

whereA′′j = Aj asa = b. The corressponding NLSE has the form

iqt + α2qyy − a(a + 1)qxx + vq = 0 (33a)

M2v = −2[α2(|q|2)yy − a(a + 1)(|q|2)xx ]. (33b)

The Lax representations of these equations are obtained from (14) and (22), respectively,
asa = b.

3.5. The M-XX equation

This equation is read as [6]

iSt = 1
2[S, bSηη − (b + 1)Sξξ ] + wηSη + wξSξ (34a)

wξη = − 1

4i
tr(S[Sη, Sξ ]) (34b)

wherew = −α−1u. The associated linear problem is given by

8Z+ = S8Z− (35a)

8t = 2i[S + (2b + 1)I ]8Z−Z− + iW08Z− (35b)

whereZ± = ξ ± η and

W0 = (2b + 1)(E + FS)+ F + ES + 1
2SZ− + 2(2b + 1)SSZ− + SSZ+

E = i

α
uZ− F = i

α
uZ+ .

The gauge equivalent equation looks like

iqt + (1+ b)qξξ − bqηη + vq = 0 (36a)

vξη = −2{(1+ b)(pq)ξξ − b(pq)ηη}. (36b)
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This equation is integrated by the linear problem

fZ+ = σ3fZ− + B0f (37a)

ft = 4iC2fZ−Z− + 2C1fZ− + C0f. (37b)

whereB0, Cj are given as in (19).
Thus, we have presented some of the reductions of equation (13). All of these reductions

are integrable in the sense that they admit the Lax representations.

4. The (2+ 1)-dimensional integrable spin system with anisotropy

4.1. Gauge equivalent counterpart of the anisotropic spin system

As an integrable system, the anisotropic LLE (12) can admit several integrable(2+ 1)-
dimensional extensions [6]. One such integrable(2+ 1)-dimensional extension of the LLE
(12) asJ1 = J2 = 0, J3 = 4 is the following M-I equation with one-ion anisotropy

St = (S ∧ Sy + uS)x + vS ∧ n (38a)

ux = −S · (Sx ∧ Sy) (38b)

vx = 4(Sy · n) (38c)

where u and v are scalar functions,n = (0, 0, 1), and4 < 0 and4 > 0 correspond
respectively to the system with an easy plane and to that with an easy axis. Note that if the
symmetry∂x = ∂y is imposed then the M-I equation (38) reduces to the well known LLE
with single-site anisotropy

St = S ∧ (Sxx +4(S · n)n) (39)

which is the particular case of the LLE (12) asJ1 = J2 = 0, L3 = 4. On the other hand,
in the case when4 = 0, equation (38) becomes the isotropic M-I equation (3). It is known
that equation (39) is gauge equivalent to the NLSE (2) [12–15]. In this section we construct
the NLSE which is gauge equivalent to equation (38) with easy-axis anisotropy(4 > 0).

The Lax representation of the equation (38) may be given by [6]

ψx = L1ψ ψt = 2λψy +M1ψ (40)

where

L1 = iλS + µ[σ3, S] M1 = 2λA+ 2iµ[A, σ3] + 4iµ2{σ3, V }σ3 (41)

with

S =
3∑
k=1

Skσk A = 1
4([S, Sy ] + 2iuS) µ =

√
4
4

4 > 0

and

V = 4
∫ x

−∞
Sy dx. (42)

Here σk is a Pauli matrix, [,] ({,}) denoting the commutator (anticommutator), andλ is
a spectral parameter. The matrixS has the following properties:S2 = I , S∗ = S,
tr S = 0. The compatibility condition of system (40)ψxt = ψtx gives equation (38).
Let us now consider the gauge transformation induced byg(x, y, t) : ψ = g−1φ, where
g∗ = g−1 ∈ SU(2). It follows from the properties of the matrixS that it can be represented
in the formS = g−1σ3g. The new gauge equivalent operatorsL2,M2 are given by

L2 = gL1g
−1+ gxg−1 M2 = gM1g

−1+ gtg−1− 2λgyg
−1 (43)
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and satisfy the following system of equations

φx = L2φ φt = 2λφy +M2φ. (44)

Now choosing

gxg
−1+ µg[σ3, S]g−1 = U0 gSg−1 = σ3 (45a)

gtg
−1+ 2iµg[A, σ3]g−1+ 4iµ2g{σ3, V }σ3g

−1 = V0 (45b)

with

U0 =
(

0 q

−q̄ 0

)
V0 = iσ3(∂

−1
x |q|2y − U0y)

whereq(x, y, t) are the new complex-valued fields. Hence we finally obtain

L2 = iλσ3+ U0 M2 = V0. (46)

The compatibility conditionφxt = φtx of system (44) with operatorsL2,M2 (46) leads to
the (2+ 1)-dimensional NLSE [10, 11]

iqt = qxy + wq wx = 2(|q|2)y. (47)

This equation, under the reduction∂y = ∂x , becomes the well known(1+1)-dimensional
NLSE (2) asE = +1. Thus we have shown that the M-I equation with single-site anisotropy
(38) is gauge equivalent to the(2+ 1)-dimensional NLSE—the ZE (47).

4.2. The isotropic and anisotropic spin systems: gauge equivalence

It is already known that equations (47) are gauge and geometrically equivalent to the
isotropic M-I equation [7, 16–18]

iS ′t = 1
2([S

′, S ′y ] + 2iu′S ′)x (48a)

u′x = −
1

4i
tr(S ′[S ′x, S

′
y ]) (48b)

which was introduced in [6] and arises from the compatibility condition of the linear problem

fx = L′1f ft = 2λfy + λM ′1f (49)

where

L′1 = iλS ′ M ′1 = 1
2([S

′, S ′y ] + 2iu′S ′). (50)

Now we show that between the isotropic (48) and anisotropic (38) versions of the M-I
equation the gauge equivalence takes place. Indeed the Lax representations, (40) and (49),
which reproduce equations (38) and (48), respectively, can be obtained from each other by
the λ-independent gauge transformation

L′1 = hL1h
−1+ hxh−1 M ′1 = hM1h

−1+ hth−1 (51)

with h(x, y, t) = ψ−1|λ=λ0, whereλ0 is some fixed value of the spectral parameterλ.
So, the solutions of equations (38) and (48) are connected with each other by formulae

S = h−1S ′h. Now we present the important relations between the field variablesq andS:

|q|2 = 1
2[S2

x − 8µS3x + 16µ2(1− S3
2)] (52a)

q̄xq − q̄qx = i

4
S · [Sxx + 16µ2(S · n)n)] + 4µS · (Sxx ∧ n). (52b)

These relations coincide with the corresponding connections betweenq andS from the
one-dimensional case [12, 13].
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Note that equation (38) with (4 < 0) easy plane single-site anisotropy is gauge
equivalent to the following general(2+ 1)-dimensional NLSE [10, 11]

iqt = qxy + wq (53a)

ipt = −pxy − wp (53b)

wx = 2(pq)y. (53c)

Besides, it can be shown that equation (38), whenS ∈ SU(1, 1)/U(1), i.e. the non-compact
group case, is gauge equivalent to the NLSE (53) with the repulsive interaction,p = −q̄.

Finally, we note that the M-I equation (38) is the particular case of the M-III equation

St = (S ∧ Sy + uS)x + 2b(cb + d)Sy − 4cvSx + S ∧ V (54a)

ux = −S(̇Sx ∧ Sy) (54b)

vx = 1

4(2bc + d)2 (S
2
x)y (54c)

Vx = JSy. (54d)

Note that these equations admit some integrable reductions: (a) the isotropic M-I equation
asc = J = 0; (b) the anisotropic M-I equation asc = J1 = J2 = 0; (c) the M-II equation
asd = Jj = 0 and; (d) the isotropic M-III equation asJ = 0 and so on [6].

5. Concluding remarks

We have established the gauge equivalence between the(2 + 1)-dimensional classical
continuous Heisenberg spin chain, the so-called M-IX equation (13) and the(2 + 1)-
dimensional Zakharov equation (24). We have also presented their integrable reductions.

Another interesting concept in the theory of NLDE, and in particular spin systems, is the
so-called the Lakshmanan equivalence [3]. The point is that, as shown by Lakshmanan [3],
equations (1) and (2) are equivalent to each other in the geometrical sense. This equivalence,
between spin systems and the corresponding NLSE, we call the Lakshmanan equivalence
or L-equivalence. The L-equivalence between some(2+ 1)-dimensional spin systems and
the corresponding NLSE, in particular between equations (3) and (47), is constructed in
[6, 8, 16–18]. This problem deserves an individual and more detailed examination and we
will discuss it elsewhere (see, e.g. [6, 8]).

Finally, regarding equations (38), (47) and (48) we should note the following fact. A
spectral parameterλ, in contrast with the (1+1)-dimensional case whereλt = 0, in our case
satisfies the following nonlinear equation

λt = 2λλy. (55)

We can solve this equation using the following Lax representation

hx = iλσ3h ht = 2λhy. (56)

The trivial solution isλ = λ1 = constant. Let us find the other non-trivial solutions. We
consider the following general equation

λt = κλnλy (57)

whereκ = constant. Let us assume that

λy =
∑
j

bjλ
j λt =

∑
j

djλ
j (58)
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wherebj , dj are some functions in general ofy, t . In particular, we can take

λt = λ

a − κt λy = λ

y + c (59)

wherea(c) is real (complex) constant. Hence, it follows that the solution of equation (57)
has the form

λ = λ2 =
(
y + c
a − κt

)1
n

. (60)

So, if n = 1, we have

λ2 = y + c
a − κt . (61)

If n = 2, we have

λ2 =
(
y + c
a − κt

)1
2

(62)

and so on. In our case the solution of (55) has the form (61) withκ = 2. It is necessary
to note that unlike the 1+ 1 dimensions, whereλt = 0, in 2+ 1 dimensions, we have the
following integral of motion for the spectral parameter

K =
∫
λ dy Kt = 0. (63)

Finally, we note the corresponding solutions of the soliton equations are called the
overlapping or breaking solutions [19]. In this case soliton equations must be solved with
the help of the non-isospectral version of the inverse scattering transform (IST) method.
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