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Abstract. The gauge equivalence between tBe+ 1)-dimensional Zakharov equation and the
(2+1)-dimensional integrable continuous Heisenberg ferromagnetic model is established. Their
integrable reductions are also shown explicitly.

1. Introduction

The concepts of gauge equivalence between completely integrable partial differential
equations (NPDE) play an important role in the theory of solitons [1,2]. So, for example,
in (14 1)-dimensional soliton theory, a well known gauge equivalence takes place between
the Landau-Lifshitz equation (LLE) or thél + 1)-dimensional continuous Heisenberg
ferromagnetic model

S, =8SAS,, (1)
and the nonlinear Sctdinger equation (NLSE)
i + qxx + 2E|q1%g = 0 )

whereE = +1 [1-3].

Many efforts have recently been made to study tBet+ 1)-dimensional integrable
NPDE [4-11]. Here we have the following interesting phenomenon: for eykery 1)-
dimensional soliton (integrable) equation, there exist sev@r&ll)-dimensional integrable
(and nonintegrable) generalizations. So, for example, the LLE (1) admits the following
(2+1)-dimensional integrable and nonintegrable extensions. (Below we use the conditional
notations, e.g. the M-I equation or the M-IX equation, etc, in order to distinguish the
different spin systems.)

(1°) The M-I equation [6]

S = A8y +uS), (33)

uy =—5(S; A S,). (3b)
(2°) The M-VIII equation [6]

S, =8 A S +uS, (48)

uy =kS(Sy A Sy). (4b)
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(3°) The Ishimori equation [9]

S, = S A(Sy +0a%8,,) +u, S, +u,S, (5a)

Uy — azuyy = —20%S(S, A S)). (5b)
(4°) The M-IX equation [6]

S; =S AM1S + AxS, + A1S, (6a)

Mou = —22%cS(S, A Sy). (6b)
(5°) The M-XVIII equation [6]

S, =S A (S —a(2b+1)8S,, +a?S,,} + ApS. + AoS, (7a)

ey — @ty = —20°k S(S, A S,). (7b)
(6°) The M-XIX equation [6]

S, = S A {8,y —ala+ 1)S.} + AjS. + ALS, (8a)

Mou = —22%cS(S, A Sy). (8b)
(7°) The M-XX equation [6]

S, =S A+ DS,y —bSyy} + (b + Du, S, + bu, S, (%)

Uy = akS(Sy A S)). (9b)
(8°) The (2 + 1)-dimensional LLE

S, =S A (S + Syy) (10)

and so on. Heres = (51, S, S3), S2 =1, a, b, a, k are constantsy is a scalar function.

All of these equations i1+ 1)-dimensions reduce to the LLE (1). Note that here equations
(3)—(9) are integrable, at the same time equation (10) is apparently not integrable. Besides
which, all of these spin systems have a remarkable common property, namely, they possess
the topological invariant

+00
0= i/ dvdy S(S; A S,). (12)
47

The solutions of these spin systems are therefore classified by the integer value of
Q=N=0,+£1,4+2,43,....

In 2+ 1 dimensions, gauge equivalence has been recently constructed for the Davey—
Stewartson and Ishimori equations [5], for other spin systems, nonlineaddbeger-type
equations etc [6-8]. Here, in particular, the following two questions naturally arise.

() What equations are gauge equivalent counterparts of the equations (3), (4) and
(6)-(9)?

(2) What equations are th€2 + 1)-dimensional integrable generalizations of the
anisotropic LLE?

S, =SAS,+SAJS (12)

where J = diag(Jy, J2, J3) is the matrix of anisotropy. In this work we try to provide
answers to these guestions.

This paper is organized as follows. In section 2 we establish the gauge equivalence
between the M-IX equation and the Zakharov equation. In section 3 we construct the
integrable reductions of the M-IX equation and present their equivalent counterparts. In
section 4 we consider th@ + 1)-dimensional continuous Heisenberg ferromagnet model
with the one-ion anisotropy and obtain its equivalent soliton equation. Also, we establish
the gauge equivalence between the isotropic and anisotropic versions of this model. We
finish with a conclusion.

—00
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2. Gauge equivalence between the M-IX equation and the Zakharov equation

The M-IX equation looks like [6]

iS; + 3[S, M1S] + A2S, + A1S, =0 (13)
2
Mou = % tr(S[Sy. S,]) (130)
wherea, b, a = constants and
_ S3 VS_ + . 2 2
S_(rS+ _S3> St =51 iS5, §$?2=1 r?=+1
92 92 92

— 42 2
Ml_a a—yz+20[(b—a) +(Cl —hb—b)@

dxady
2 2 2

d 0
My=a?— —a(2a+1 1H—s
2= dy?2 (24 + )Bxay talat )8x2

Ay = 2i{a(2b + Du, — (2ab + a + b)u,)
Ay = 2i{a (2a®b + a® + 2ab + b)u, — (2ab + a + b)u,}.

This set of equations is integrable in the sense that it admits the Lax representation and
has different types of solutions. In general, we will distinguish the two integrable cases: the
M-IXA equation asx? = 1 and the M-IXB equation ag? = —1. Besides, the equation (13)
admits several integrable reductions: the M-VIII equatio® as0, the Ishimori equation as
a=b= —% and so on. Equation (13) is th@ + 1)-dimensional integrable generalization
of the LLE (1) and in 1+ 1 dimensions reduces to it.

The Lax representation of the equation (13) is given by [6]

a®, = 3[S+ (2a + DI]D, (14a)
®, = 12[S+(2b+1)1]c1>” n 12W<I>x (140)
with
W=@b+DE+2b—a+3)SSc+ (2b+1FS+ FI + 1S, + ES +aSS,
i i ((2a+ Du,
E=——u, F=_ """ _24,).
20" 2( o M})

Let us now find the equation which is gauge equivalent to equation (13). To this end,
we consider the following transformation

b = g_l\I/ (15)

where @ is the matrix solution of linear problem (14% and g are temporally unknown
matrix-valued functions. Substituting (15) into (14) we get

aWV, = 3[gSg ™t + (2a + DIV, + [ogy — 58S "gr — 3(2a + Dgi]g ¥ (16a)

v, = IE[gSg’l + 2>+ DIV + ¢ {i[S + @b+ DI1(g™H, + %ng} v,

+g {g,g‘1 +olS+ @+ DIED + I§W<g—1)x} v. (160)

Now let us choose the unknown functiogsand S in the form

_ | 11+ $3) firS™

]
‘( farS* —f2(1+53)> S=g os (A7)



9538 R Myrzakulov et al

where f; satisfy the following equations:
(a+ 1)(Szx + S353 + SX_S+) — a(S3y + 383, + Sy_S+)

a(n fi)y — (@ + D(n f1), = 2(1+ S3)

(183)
a(Sac + S383, + SjS*) — a(S3y + 5383, + S;FS*)

a(n f2), —a(n f2), = 2(1+ S3)

From (16), (17) it follows that
agyg " — Big:g ' = Bo (19)

_(a+1 O (0 ¢
ne(f31) we(23)
Herea = constant ang, g are some complex functions which are equal to
g - Silo[S3y ST — ST (1 + S3)] + (a + D[SaS™ — S, (1 + S3)]}

(180)

where

(202)
2f2(1+ S3)
. folalSac ST — ST (1+ S3)] + oS3, ST — S, (1 + 53)]}. (200)
2f1(1+ S3)

Hence we obtain
pq = {@(2a + 1)S, S, +iaS (S, A S,) —a(a +1)S? — a®S?%} (21)

where S = (81, S», S3) is the spin vectorS? = 1. After these calculations equations (16)
take the forms

(X\Iﬂ’y = BV, + Bg¥ (22&)
v, = iC2lI‘,Xx + C1V, + CoW (22))

_ b+1 O _ 0 igq _fc11 c12
("5 0)  a-(n ) e-(3 )

c12=1(2b —a + 1)g, +iag, c1=i(a — 2b)p, — iapy.

with

Herec;; is the solution of the following equations
(@ + Derre — acryy = i[(2b — a + D(pg)x + a(pq),]
acz: — acy = i[(a — 2b)(pg)x — a(pq)y].

The compatibility condition of equations (22) gives the followi(®+ 1)-dimensional
nonlinear Schidinger-type equation

(23)

ig. + Mg +vqg =0 (244)
ipy— Mip—vp =0 (2%p)
Mpv = —2M1(pq) (24c)

which is the Zakharov equation (ZE) [10], wheve= i(c11 — c22) and p = r?q. Thus

we have proved that equation (13) is gauge equivalent tqZhe1)-dimensional ZE (24)

and vice versa. Note that the gauge transformation presented above is reversible. In fact,
starting from the linear problem (22) after the standard gauge transformation, we can come
to the Lax representation (14) of equation (13) that proves the gauge equivalence between
equations (13) and (24).
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3. Integrable reductions

It is interesting to note that equation (13) admits some integrable reductions. Let us now
consider these particular integrable cases.

3.1. The M-VIII equation
Let b = 0. Then equations (13) take the form

IS, = 3[See, S]+iwS; (25a)
1
wy = Z- (SIS, Se) (25b)
where
a+1 a 1
§=x+ y n=-—Xx——y W= ——ug
o o

which is the M-VIII equation [6]. The corresponding Lax representation has the form
Dy =SSPy (26a)
D, =2([S+ 1Pz-7- +1KDz- (26b)
whereZ* =& + 5 and

i
K=E0+EOS+Sz—+2SSZ—+SSZ+ E0= —(uz+ +l/tz—).
o

The gauge equivalent counterpart of equation (25), we obtain from (24)=a6

i +qse +vg =0 (27a)
vy = —2r3(qq): (27b)
which is the other ZE [10].

3.2. The Ishimori equation

Now let us consider the case:= b = —%. In this case equations (13) reduce to the well
known Ishimori equation
iS; + 3[S, (3Sur + &?Sy))] +iuy Sy +iugS, =0 (28)
2 1 o?
Uy, — Zuxx = tr(S[Sy, Sil). (280)

The Ishimori equation (28) is of great interest, since it is the first example of integrable
spin systems on the plane. This equation is considered as a useful ‘laboratory’ for
experiments with new theoretical tools to reveal the specific nature of soliton models of
(2+ 1)-dimensional spin systems. As is well known, equation (28) allows us to obtain the
rich class of topologically nontrivial and nonequivalent solutions (solitons, lumps, vortex,
dromions and so on) which are classified by the value of the topological charge (11).

The gauge equivalent counterpart of equation (28) is the Davey—Stewartson equation

ig: + 2qxx +0%gyy +vg =0 (2%)

azvyy - %Uxx = _2{052(17‘])” + %(pQ)xx} (2%)

that follows from the ZE (24). This fact was first established in [5]. The Lax representations
of (28) and (29) can be obtained from (14) and (22), respectively,-a® = —%.
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3.3. The M-XVIII equation

Now we consider the reductiona = —%. Equation (13) then reduces to the M-XVIII
equation [6]

1S, + 318, (38:x — a(2b + 1)Syy + @®Sy,)] + A5S, + A1S, =0 (308)

1 o?

o?uy, — 2= tr(S[S,, S.]) (30b)
whereA) = A; asa = —%. The corresponding gauge equivalent equation is obtained from
(24) and looks like

g, + 3qxx — (2D + Dgyy + gy, +vg =0 (31a)

a?vyy = GV = =2{0%(Pg)yy — @ (2 + D) (Pq)xy + 3(PPxx ). (31b)

From (14) and (22) we obtain the Lax representations of (30) and (31), respectively, as
1
a = —35.

N

3.4. The M-XIX equation

Let us consider the case:= b. Then we obtain the M-XIX equation [6]

IS, = 3[8, {&®Syy — ala + DS} + ASS, + ALS, (32a)

Mou = _OjTiz tr(S[Ss, S,]) (320)
where A} = A; asa = b. The corressponding NLSE has the form

ig: + o%qyy — a(a + 1)gex +vg =0 (3%)

Mav = =2[a?(Ig1%),y — a(a + D(lg[*)w]- (33)

The Lax representations of these equations are obtained from (14) and (22), respectively,
asa =b.

3.5. The M-XX equation

This equation is read as [6]

iS, = 3[S, b8y, — (b + DSeel + w, S, + we S (34a)
1
Wey = —m tr(S[S,,, Sg]) (34b)
wherew = —a~'u. The associated linear problem is given by
by =SSPy (353)
D, =2[S+2b+DI|Pz-7- +i1Wed,- (35h)

whereZ* = & £ 5 and

Wo=(2b+1)(E+FS)+F+ES+3S7- +22b+1)SSz- + SSz+

| |
E=—uz F=—uz+.

o o
The gauge equivalent equation looks like
ig: + (14 b)ges — bgpy +vg =0 (362)

vey = —2((1+ b)(p@)ec — b(p@)y}- (360)
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This equation is integrated by the linear problem
Jfz+ = o03fz- + Bof (373)
fi =4iCafz-7- +2C1fz- + Cof. (370)

where By, C; are given as in (19).
Thus, we have presented some of the reductions of equation (13). All of these reductions
are integrable in the sense that they admit the Lax representations.

4. The (2 + 1)-dimensional integrable spin system with anisotropy

4.1. Gauge equivalent counterpart of the anisotropic spin system

As an integrable system, the anisotropic LLE (12) can admit several integfakiel)-
dimensional extensions [6]. One such integrat®e- 1)-dimensional extension of the LLE
(12) asJ; = J, =0, J3 = A is the following M-I equation with one-ion anisotropy

S =B A8, +uS),+vSAn (38a)
uy =—5-(5: A8y (38b)
vy = A(Sy - m) (38c)

whereu and v are scalar functionsp = (0,0,1), and A < 0 andA > 0 correspond
respectively to the system with an easy plane and to that with an easy axis. Note that if the
symmetryd, = 9, is imposed then the M-I equation (38) reduces to the well known LLE
with single-site anisotropy

S =8 A (S +A(S-n)n) (39)

which is the particular case of the LLE (12) ds= J, = 0, L3 = A. On the other hand,
in the case wher = 0, equation (38) becomes the isotropic M-I equation (3). It is known
that equation (39) is gauge equivalent to the NLSE (2) [12—-15]. In this section we construct
the NLSE which is gauge equivalent to equation (38) with easy-axis anisotropy 0).

The Lax representation of the equation (38) may be given by [6]

TR s sy (40)
where
with
3 . ~
S:;SkO’k A= Z([S’ Sy]+2|MS) w= 7 A>0
and
= A/ S, d. (42)

Here oy is a Pauli matrix, [,] {,}) denoting the commutator (anticommutator), ands

a spectral parameter. The matrk has the following properties:S?2 = I, §* = S,
trS = 0. The compatibility condition of system (4Q),, = .. gives equation (38).
Let us now consider the gauge transformation inducect @y v, ) : ¥ = g 1¢, where
g* =gt e SU(2. It follows from the properties of the matri that it can be represented
in the form S = g~o3g. The new gauge equivalent operatdrs M, are given by

Ly=gLigt +g.87" My=gMig™t +gg7t —20g,872 (43)
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and satisfy the following system of equations

¢ = Log ¢ = 20y + M2g. (44)
Now choosing

8:8 "+ puglos, Slg™t = U gSg =03 (459)

8¢+ 2ipuglA, o3lg ™t + 4ip’glos, Viesg T = Vo (450)
with

vo=( % 4 Vo =033 g2 — U

o=|_5 o 0 =103(3, " lg[§ — Uoy)

whereg(x, y, t) are the new complex-valued fields. Hence we finally obtain

L, =iro3+ Uy Mo = V. (46)

The compatibility conditionp,, = ¢,, of system (44) with operators,, M, (46) leads to
the (2 + 1)-dimensional NLSE [10, 11]

iq[ = qxy + wqg Wy = 2(|Q|2)y- (47)

This equation, under the reductién= 9., becomes the well knowfi+1)-dimensional
NLSE (2) astE = +1. Thus we have shown that the M-I equation with single-site anisotropy
(38) is gauge equivalent to th@ + 1)-dimensional NLSE—the ZE (47).

4.2. The isotropic and anisotropic spin systems: gauge equivalence

It is already known that equations (47) are gauge and geometrically equivalent to the
isotropic M-I equation [7,16—18]

IS, = 2([S, S,] + 2iu'S"), (48a)
1
u, = ~u tr(S'[S;, S;1) (48b)
which was introduced in [6] and arises from the compatibility condition of the linear problem
fr=Lif fr=20fy + 1M1 f (49)
where
L) =irS M = 3(S'. S;] +2i'S)). (50)

Now we show that between the isotropic (48) and anisotropic (38) versions of the M-I
equation the gauge equivalence takes place. Indeed the Lax representations, (40) and (49),
which reproduce equations (38) and (48), respectively, can be obtained from each other by
the A-independent gauge transformation

Ly =hLih ™Y+ heh™t M, =hMih™ + bt (51)

with h(x, y, t) = ¢71|A:on wherelq is some fixed value of the spectral parameter
So, the solutions of equations (38) and (48) are connected with each other by formulae
S = h~1S'h. Now we present the important relations between the field variapksd S:

lg1? = 1[S? — 8uSa, + 160%(1 — S3)] (52a)
i
éxq - q%c = ZS . [Sxx + 16,U«2(S . n)n)] + 4MS - (Six AM). (523)

These relations coincide with the corresponding connections betyvaed S from the
one-dimensional case [12, 13].
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Note that equation (38) withX < 0) easy plane single-site anisotropy is gauge
equivalent to the following gener&® + 1)-dimensional NLSE [10, 11]

ig: = qxy +wgq (539)
ipt = —PDxy —Wp (53))
wy = 2(pq)y. (53)

Besides, it can be shown that equation (38), wienSU (1, 1)/U (1), i.e. the non-compact
group case, is gauge equivalent to the NLSE (53) with the repulsive interaptien-g.
Finally, we note that the M-I equation (38) is the particular case of the M-Ill equation

S, =(SAS,+uS), +2b(ch+d)S, —4cvS, + S AV (54a)

uy = —S(S, A S)) (54b)
1

(8D (54)

YT A2be + d)?
V, = IS, (54d)

Note that these equations admit some integrable reductions: (a) the isotropic M-I equation
asc = J = 0; (b) the anisotropic M-I equation as= J; = J, = 0; (c) the M-Il equation
asd = J; = 0 and; (d) the isotropic M-IIl equation as= 0 and so on [6].

5. Concluding remarks

We have established the gauge equivalence betweer(2the 1)-dimensional classical
continuous Heisenberg spin chain, the so-called M-IX equation (13) and2the 1)-
dimensional Zakharov equation (24). We have also presented their integrable reductions.

Another interesting concept in the theory of NLDE, and in particular spin systems, is the
so-called the Lakshmanan equivalence [3]. The point is that, as shown by Lakshmanan [3],
equations (1) and (2) are equivalent to each other in the geometrical sense. This equivalence,
between spin systems and the corresponding NLSE, we call the Lakshmanan equivalence
or L-equivalence. The L-equivalence between sdthe 1)-dimensional spin systems and
the corresponding NLSE, in particular between equations (3) and (47), is constructed in
[6,8,16-18]. This problem deserves an individual and more detailed examination and we
will discuss it elsewhere (see, e.qg. [6, 8]).

Finally, regarding equations (38), (47) and (48) we should note the following fact. A
spectral parametey, in contrast with the (1+1)-dimensional case where= 0, in our case
satisfies the following nonlinear equation

Ay = 2ALy. (55)
We can solve this equation using the following Lax representation
h, = irosh h; = 24h,. (56)

The trivial solution ish = A; = constant. Let us find the other non-trivial solutions. We
consider the following general equation

A= KA (57)

wherekx = constant. Let us assume that

by =Y biM M=y di) (58)
j j
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whereb;, d; are some functions in general 9fz. In particular, we can take
A A
Ay =
ytc

wherea(c) is real (complex) constant. Hence, it follows that the solution of equation (57)
has the form

A = (59)

a—Kt

1
A:/\zz(y+c>. (60)
a—kKt
So, ifn = 1, we have
ho= 2 (61)
a — kKt
If n =2, we have
1
2
x2=(”c> (62)
a— Kkt

and so on. In our case the solution of (55) has the form (61) with 2. It is necessary
to note that unlike the % 1 dimensions, wherg, = 0, in 2+ 1 dimensions, we have the
following integral of motion for the spectral parameter

K= /kdy K, = 0. (63)

Finally, we note the corresponding solutions of the soliton equations are called the
overlapping or breaking solutions [19]. In this case soliton equations must be solved with
the help of the non-isospectral version of the inverse scattering transform (IST) method.
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